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The Banzhaf Power Index is a widely-used method for understanding the power of participants in voting games.

Some voting games exhibit a hierarchical structure, such as the French Senate or ensemble learning methods; such

games are called hierarchical voting games. In this thesis, we introduce an algorithm to calculate the Banzhaf Power

Index in a hierarchical voting game with a runtime ofO(nS2S), where n is the number of players in the game and S

is the branching factor. This is an exponential improvement over the naive algorithm, which has runtime O(n22n).

We apply our algorithm to two examples: French Senate elections and the importance of words in determining

positive or negative sentiment in language. We calculate the power of individual voters in France, which is an

intractable problem running the naive algorithm, and show clear improvement in the complexity of computing the

importance of words.
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1 Introduction
The outcomes of elections across the world touch many aspects of our lives, from the taxes we pay to the

quality of the air we breath. But these elections often involve complicated mechanisms, such as when voters have

di�erent weights in determining the outcome. One famous example is the United States electoral college. In the

electoral college, which elects the president of the United States, each state has voting weight equal to its number

of Senators plus its Representatives, a number that varies between 3 and 55 [5]. France’s Senate elections are even

more complicated: voters elect delegates from their communes, who in turn vote in one of many electoral colleges

across the country to choose Senators [29]. There are also complex non-political elections: for example, stockholder

votes in a corporation involve each stockholder having voting weight equal to the amount of stock they own [13]

[20]. In these systems, where the mechanism for determining the outcome can be complicated, it is often unclear

how much in�uence each voter has over the outcome. But it is important to understand the distribution of power

among voters to see whether a system is fair or not - usually, we want to follow principles such as "one person,

one vote" or voting power equal to some function of the population or tax base of a given representative. Objective

measures of power help us determine whether the system meets that standard of fairness, and, when a system is

unfair, detect it even when it the mechanism is complex.

One way to model elections is as voting games[5]. Voting games consist of a set of voters and a function,

the characteristic function, which takes as input a coalition of these voters and returns a binary variable. If the

characteristic function outputs a 1, we say that the coalition is a winning coalition, and if the characteristic function

outputs a 0, we say that the coalition is a losing coalition. For example, if we model the United States electoral college

as a voting game, then the set of voters is the set of states and the characteristic function returns 1 for a coalition

whose electoral votes sum to at least 270. So any coalition of states whose total electoral votes is at least 270 is a

winning coalition and every other coalition is a losing coalition.

The �rst studies on the distribution of power in voting games date back to as early as 1944. Following von

Neumann and Morgenstern’s seminal work on power in voting games[21], Banzhaf proposed a way to measure

power in voting games [4]. The Banzhaf power index, or BPI, was �rst applied by Turnovec and has since then

remained a popualar tool [34]. It involves looking at every subset of voters and, if that subset is a winning coali-

tion, determining which voters are critical to it being a winning coalition. The full algorithm can be found in the

preliminaries section. A few applications include the United State electoral college [5], the European Union [12] [9]

[3] [28] [25], the International Monetary Fund [2], feature importance in machine learning [15], and shareholders

and corporate boards [13] [20].

An alternate and popular power index is the Shapley-Shubik power index, or SSPI, which involves looking at

every permutation of voters rather than every subset of voters (as the BPI does) [32]. The SSPI has been widely

used in modelling power distribution in the electoral college [35], feature importance in machine learning [11] and

shareholders on corporate boards [23]. This paper is not concerned with the SSPI, but the techniques we develop

in this thesis provide directions for future research to extend our results to the SSPI. In this thesis, we’ll use the BPI

as our method to determine the power of votes in an election.

Unfortunately, the computation of the BPI is in general intractable, since its runtime is exponential. When run

directly, as in the naive algorithm laid out in the preliminaries section, each of the 2n coalitions is checked to see

if it is a winning coalition, an operation that takes O(n) time, all of this for each of the n players. This leads to an

overall time complexity of O(n22n) [14], which is prohibitively expensive. In this thesis, we’ll show how we can

exploit a particular type of characteristic function to reduce that complexity.

A characteristic function can be any function that takes a coalition of voters as input and produces a binary

output, so many characteristic functions are not as simple as the one that models the United States electoral col-

lege. Some voting games are multi-level rather than single level: research has introduced the notion of compound

voting, which is modelled as a multi-tiered voting game [8] [10]. These games are structured as trees, where the

voters are the leaf nodes and their votes are propagated up the tree, at each level the result being determined by

a characteristic function. Votes propagating up the tree means that the votes cast at the bottom determine how
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higher-level delegates vote - for example, if most people in Arizona vote for the Republican candidate for president,

then Arizona itself will cast its votes for the Republican candidate in the U.S. Electoral College. The characteristic

function of the entire game, then, consists of the output of each of these characteristic functions, one at each branch

of the tree. We call this type of voting game a hierarchical voting game. This is the structure we will exploit to

speed up computation time.

One example of a compound voting game is elections for the French Senate, which involve multiple levels

of electoral colleges. Voters vote for delegates from their communes, who vote in their own electoral colleges to

elect the Senators from their district, who vote in the Senate. Then, this is a three-tiered game (voters choosing

delegates, delegates choosing Senators, Senators voting on legislation). At each level, votes propagate up the tree via

an electoral college - so the characteristic function at each level is an electoral college and the overall characteristic

function is the entire mechanism of electing the French Senate. We discuss this example in much greater detail in

section 4.

Another application of a hierarchical voting game is tree structured ensemble learning models, i.e., an ensemble

learning model that combines multiple learning algorithms in a tree structure in order to obtain better predictive

performance than any of the individual algorithms alone. In order to predict for some data point, each individual

model computes its prediction. Then these predictions are propagated up the tree, with each level of the tree the

predictions combined according to a characteristic function.

For each of these two cases, the BPI is instructive in understanding how much power each voter has. In a

machine learning ensemble, it is helpful for an end user to understand which learning model has the greatest

in�uence over the ensemble’s prediction. In the French Senate, it is helpful to know if voters in di�erent regions

have di�erent amounts of power (and thus representation) in their government.

In this paper, we introduce an e�cient algorithm for computing the BPI on hierarchical voting games. Running

the BPI directly takes time complexity ofO(n22n), where n is the number of players in the game. The runtime of our

algorithm is O(nS2S), where n is the number of nodes in the tree and S is the branching factor. This sharply cuts

the runtime of the calculation, making much larger problems tractable, especially if they have a small branching

factor. Our algorithm can also be run in a depth-�rst manner, which makes the computation of the power for

speci�c voters much quicker.

To demonstrate the power of this more e�cient algorithm, we calculate the power of individual voters in

Toulouse and Saint Martin in French Senate elections, which would be intractable to calculate directly with the

naive algorithm. We �nd that a voter in Saint Martin has about six times as much power in the French Senate than

a voter in Toulouse. We then run large-scale experiments for the problem of vocabulary selection, a case where our

algorithm is only approximately equal to the BPI. In this case, we show that our algorithm signi�cantly outperforms

the naive algorithm: for example, running our algorithm on a paragraph of 10 words takes under thirty seconds,

whereas it takes over three hours running the naive algorithm. There is also a minimal amount of accuracy lost, as

fully displayed in the results section.

2 Preliminaries

2.1 Voting Games

A voting game G = (N, v) is a tuple where N is a set of players and v : 2N → {0, 1} is a characteristic

function which takes as input a coalition and outputs a binary variable with v(∅) = 0, v(N) = 1. N ′ is a winning
coalition if v(N ′) = 1; otherwise it is a losing coalition. The complement of a coalition c ⊆ N for a game

G = (N, v) is the coalition N \ c. A game is said to be balanced if the complement of a winning coalition is a

losing coalition and the complement of a losing coalition is a winning coalition. That is, given c ⊆ N for a balanced

game G = (N, v), if v(c) = 1, then v(N − c) = 0, and if v(c) = 0, then v(N − c) = 1.

A minimal winning coalition is a coalition c ⊆ N s.t. v(c) = 1 and there does not exist a coalition c′ ⊂ c

s.t. v(c′) = 1 exists. A player i ∈ N in game G = (N, v) is called a dictator if {i} is the only minimal winning
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coalition in the game.

There are also a couple ways to create new games from other games.

GivenG1 = (N1, v1), G2 = (N2, v2), we de�neG1∨G2 = (N1∪N2, v
′), where v′(S) = max(v1(S∩N1), v2(S∩

N2)), where S ⊆ N1 ∪N2.

GivenG1 = (N1, v1), G2 = (N2, v2), we de�neG1∧G2 = (N1∪N2, v
′), where v′(S) = v1(S∩N1)v2(S∩N2),

where S ⊆ N1 ∪N2.

Given G1 = (N1, v1), G2 = (N2, v2), we allow players i, j ∈ N , to form a bloc ij. This results in a game

G′ = (N \ {i, j} ∪ {ij}, v′), where v′(S) = v(S) if ij /∈ S ⊂ N ′ and v′(S) = v((S \ {ij})∪ {i, j}) if ij ∈ S ⊂ N ′.

For a hierarchical voting game, we refer to a tree T = (M,N, {Ek}k∈M , {vk}k∈M) with nodes M and leaf

nodes N ⊆ M . Each Ek ⊆ M is the set of children of k. The set of leaf nodes N ⊆ M is referred to as the

players. Note that Ei = ∅, for all leaf nodes i ∈ N . Each local characteristic function vk, where k ∈M , is de�ned

vk : 2
Ek → {0, 1}.

Edges point away from the root. A parent t(k) ∈ M is the unique node such that k ∈ Et(k). As a result of

the tree structure, all nodes have exactly one parent, except for the root, which has no parent. The ascendants of

a node k, denoted Ak ⊆ M , is the set of nodes that are either the parent of k or the parent of an ascendant of k.

The descendants of a node k, denoted Dk ⊆M , is the set of nodes that are either the child of k or the child of an

descendant of k. The node dj→i ∈ M , given i ∈ Dj , is the unique node s.t. dj→i ∈ Ej and dj→i ∈ Ai We denote

the root of the tree r ∈M . See Figure 1 (below) for a graphical example of these familial relations.

Then, a hierarchical voting game is a game with the characteristic function:

v(S) = v′(S; r) (1)

v′(S; k) =

{
vk(S) if Ek = ∅

vk(∪i∈Ek
v′(S ∩ (Di ∪ i); i)) if Ek 6= ∅

(2)

where S ⊆ N and k ∈M .

We denote a hierarchical voting game as a tree T = (M,N, {Ek}k∈M , {vk}k∈M). See �gure 2 (below) for a

graphical example.

For a node k ∈ M in a hierarchical voting game G = (M,N, {Ek}k∈M , {vk}k∈M), de�ne kleaf = N ∩ Dk.

Then, the subgame Gk = (Dk, kleaf , {Ek}k∈Dk
, {vk}k∈Dk

) is the hierarchical voting game with k as the root.

A one-level subgame Gmin
k = (Ek, vk) of a hierarchical voting game G = (M,N, {Ek}k∈M , {vk}k∈M) is a

voting game where k ∈M .

2.2 Weighted Games

A weighted game (N, q,w) is a voting game such that the characteristic function is of the form:

v(S) =

{
1 if

∑
i∈S

wi ≥ q

0 otherwise

, (3)

where S ⊆ N , wi ∈ N+ is a voting weight associated with each player i ∈ N , and q ∈ N+. A weighted majority
game is a weighted game where q = 1

2

∑
i∈N

wi. By default, q = 1
2
, i.e., when it is unspeci�ed. All weighted majority

games are balanced. We denote a weighted majority game as a tuple (N,w). One example of a weighted game is

the U.S. Electoral College, where the players are the states, the weights are their electoral votes, and the quota is

270. For a small, graphical example, see Figure 3 (below).
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Figure 1: Examples of tree familial relations

A

B C

D E F

Example of ascendants (B and A) and parent (B) of player E.

A

B C

D E F

Example of children (D and E), descendants (D and E), and sibling (C) of player B.

B

D E

Subgame with player B as the root.

2.3 Hierarchical weighted games

For a hierarchical weighted game we refer to a tree T = (M,N, {Ek}k∈M ,w) with nodesM and leaf nodes

N ⊆ M . Just as in a hierarchical voting game, Ek ⊆ M is the set of children of k ∈ M and the set of leaf nodes

N ⊆ M is referred to as the players. Each node k ∈ M in the tree is assigned a weight wk ∈ N+. Each non-leaf
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node k ∈M is assigned a quota qk ∈ N+. The weight of the root is 1.

Then, a hierarchical weighted game is a hierarchical voting game with the local characteristic functions, for

some k ∈M and S ⊆ Ek:

vk(S) =

{
wk if

∑
i∈S

vi(S) ≥ qk

0 otherwise

,when Ek 6= ∅ (4)

vk(S) =

{
wk if k ∈ S
0 otherwise

,when Ek = ∅ (5)

That means that the characteristic function of the game overall is:

v(S) = v′(S; r) (6)

v′(S; k) =


wk if (Ek = ∅ and k ∈ S)

or (Ek 6= ∅ and

∑
j∈Ek

v′(S; j) ≥ qk)

0 otherwise

(7)

where S ⊆ N and k ∈ M . This hierarchical weighted game is a hierarchical weighted majority game if

∀k ∈M \N, qk = 1
2

∑
i∈Ek

wi. We denote a hierarchical weighted game as a tuple (T, q,w). So, when it is unspeci�ed,

by default qk = 1
2

∑
i∈Ek

wi for all k ∈ M . All hierarchical weighted majority games are balanced. We denote a

hierarchical weighted majority game as a tuple (T,w).

2.4 Power Indices

A power index is a function p : Fn → Rn
, where Fn is the set of games with n players, and Rn

is a vector

that contains a weight for each player i ∈ N , which we interpret as its power.

The Banzhaf power index is one such index. It is de�ned as follows:

pBPI
i (N, v) =

∑
S⊆N\{i}

(v(S ∪ {i})− v(S))

2|N |−1
. (8)

The Banzhaf power index is desirable because it is uniquely characterized by four axioms which are generally

agreed upon to be desirable properties of a power index.

The sum principle: For G1 = (N1, v1), G2 = (N2, v2),pi(G1 ∨G2) + pi(G1 ∧G2) = pi(G1) + pi(G2)

The dictator principle: For G = (N, v), if i is a dictator in the game, then pi(G) = 1.

Equal treatment: Let i, j be two players in G = (N, v), that satisfy v(S ∪{i}) = v(S ∪{j}),∀S ⊆ N \ {i, j}.
Then pi(G) = pj(G).

The two-voter bloc principle: Let G′ = (N ′, v′) be the game obtained from G = (N, v) when the players

i, j ∈ N form a bloc ij. Then, pij(G
′) = pi(G) + pj(G).

The ordinary way to compute the BPI on a voting game is as follows:

Algorithm 1: BH Flat Algorithm

Result: pBPI
i , the power of each player i ∈ N players

1 Input: players N

2 for i ∈ N do
3 for S ⊆ N do
4 pBPI

i = pBPI
i + |v(S ∪ {i})− v(S)|

5 end
6 pBPI

i = pBPI
i /2|N |−1

7 end

5



Figure 2: Example of hierarchical weighted game

A

Root

wA = 1

qA = 5

B

wB = 4

qB = 6
C wC = 2 D wD = 4

E

wE = 4

F

wF = 4

G

wG = 4

Example of a Hierarchical Weighted Majority Game G = (M,N, {Ek}k∈M ,w), with

M = {A,B,C,D,E, F,G}
N = {C,D,E, F,G}
EA = {B,C,D}
EB = {E,F,G}
EC = ED = EE = EF = EG = ∅
q = {5, 6}
w = {1, 4, 2, 4, 4, 4, 4}

Then, we know that the characteristic function is:

v(S) = vA(S)

vA(S) =

{
1 if (

∑
j∈{B,C,D}

vj(S) ≥ 5)

0 otherwise

vB(S) =

{
4 if (

∑
j∈{E,F,G}

vj(S) ≥ 6)

0 otherwise

vk(S) =

{
wk if k ∈ S
0 otherwise

, k ∈ {C,D,E, F,G}

As this involves, for every player, calculating the characteristic function for every subset of the players, this

has a complexity of O(n22n), where n is the number of players in the game.

Some weighted voting games involve players that all have the same weight. It makes intuitive sense that all

these players have the same BPI, and we will codify that in the following lemma. This lemma will be useful when

we discuss the French Senate elections, as they involve some weighed games where each player has the same voting

weight.

6



Lemma 2.1. If wi = wj∀i, j,∈ N for some weighted game G = (N,w, q), all players have equal BPI, and that
is 1
|N | .

Proof. If two players i, j ∈ N in a weighted game G = (v,N,w) have the same weight, then we know that

v(S ∪ {i}) = v(S ∪ {j}),∀S ⊆ N \ {i, j}. Then, by the anonymity axiom, pi(G) = pj(G). In a game where all

players have the same weight, then they must all have the same power. Since all |N | players have equal power and

their power sums to one, they each have power
1
|N | .

Figure 3: Example of weighted majority game and BPI

Consider weighted majority gameG : (N,w) whereN = (B,C,D) and w = {4, 4, 4}. Then, we know

that the characteristic function is:

v(S) =

{
1 if

∑
i∈S

wi ≥ 6

0 otherwise

,

I.e., any coalition whose total weight is at least six is a winning coalition. The game is displayed graph-

ically below, with players in blue.

Root

BwB = 4 C wC = 4 D wD = 4

We can apply the BPI on one player, for example B:

pBPI
B (N, v) =

∑
S⊆N\{B}

(v(S ∪ {B})− v(S))

2|N |−1

=
(v({} ∪ {B})− v({})) + (v({C} ∪ {B})− v({C}))

2|{B,C,D}|−1

+
+(v({D} ∪ {B})− v({D})) + (v({C,D} ∪ {B})− v({C,D}))

2|{B,C,D}|−1

=
(0− 0) + (1− 0) + (1− 0) + (1− 1)

23−1

=
2

22

=
1

2
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3 Improved Algorithm
A straightforward algorithm for calculating the BPI would involve enumerating every subset of the players,

which is quite expensive. In this section we introduce an improved algorithm for computing the BPI on a hierar-

chical voting game. Our algorithm runs in O(nS2S) time, where n is the number of nodes in the tree and S is the

branching factor of the tree. This is a major improvement over the direct method which has a runtime of O(n22n).

To do this, we will introduce some new notation and de�ne multiplicative Banzhaf power.

For any hierarchical voting game G = (M,N, {Ek}k∈M , {vk}k∈M), we de�ne the multiplicative Banzhaf
power index, or MBPI, of some player i ∈ N as pMBPI : Fn → RN

. We will prove that when the game is balanced,

it is equal to the BPI.

pMBPI
i (G) =

{
1 if Er = ∅

pMBPI
i (Gdr→i

)(pBPI
dr→i

(Gmin
r )) otherwise

(9)

3.1 Proof of correctness

In order to prove that the MBPI of any player in a hierarchical voting game is equal to the BPI of the same

player, we will �rst prove two lemmas.

Lemma 3.1. Any voting game (N, v) that is balanced has 2|N |−1 winning coalitions and 2|N |−1 losing coalitions.

Proof. First notice that in any voting game withN players, there are 2|N | coalitions. Every coalition c ⊆ N is either

winning or losing and its complement N \ c is the opposite, so there is a one-to-one relationship between winning

and losing coalitions. Thus there are 2N−1 winning coalitions and 2N−1 losing coalitions.

Lemma 3.2. Take any balanced hierarchical voting gameG = (M,N, {Ek}k∈M , {vk}k∈M) with some player i ∈
N . Then, ifG′ is the same game but with every node that is not a sibling of i, ascendant of i, sibling of an ascendant
of i, or i itself removed, along with the corresponding edges and characteristic functions, pBPI

i (G) = pBPI
i (G′).

Proof. Given a hierarchical voting game G = (M,N, {Ek}k∈M , {vk}k∈M), pick some player i ∈ N . Now consider

creating a new game G′ = (M ′, N ′, {Ek}k∈M ′ , {vk}k∈M ′) by taking G and adding n nodes below some player j

that is not an ascendant of i, as well as the corresponding edges and characteristic functions. Then these n new

players will neither be siblings nor ascendants nor siblings of ascendants of i.

Then there is a hierarchical voting game G′j that is a subgame of G′ whose root is j and whose players are

the n new nodes. By Lemma 3.1, in this game, there are 2n−1 winning coalitions and 2n−1 losing coalitions in this

game. Then, for each coalition c ⊆ N \ {i} that i is critical to in G, there are corresponding 2n−1 coalitions in G′.

This is because for each c ⊆ N \ {i}, if j ∈ c, then c corresponds to 2n−1 coalitions c′ ∈ N ′ where j is replaced

by every winning coalition in G′j , and if j /∈ c then c corresponds to 2n−1 coalitions c′ ∈ N ′ where every losing

coalition in G′j is added to c.

Now note that |N ′|= |N |+|n|−1, as there were n new nodes and j was removed as a player (though it is still

a node).

Then it is the case that

pbh

i (G′) =

∑
S⊆N′\{i}

(v(S∪{i})−v(S))

2|N′|−1 =

∑
S⊆N\{i}

(v(S∪{i})−v(S))∗2|n|−1

2|N|−1∗2|n|−1 =

∑
S⊆N\{i}

(v(S∪{i})−v(S))

2|N|−1 = pbh

i (G)

Thus the BPI of some player i ∈ N is the same when a set of nodes that are not its siblings, ascendants, or

siblings of ascendants are removed (with their corresponding edges and characteristic functions). So when all nodes

that are not the siblings, ascendants, or siblings of ascendants of some player i ∈ N are removed, the BPI of player

i is the same.
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Figure 4: Example of removing nodes

A

B C D

E F G H I J

K L M

G4

A

B C D

E F G

G5

If G4 is a balanced hierarchical voting game, then pBPI
E (G4) = pBPI

E (G5). This is because the none of

the nodes that are removed (H, I, J,K, L,M ) are siblings of E, ascendants of E, siblings of

ascendants of E, or E itself.

Now, consider a hierarchical voting game G = (M,N, {Ek}k∈M , {vk}k∈M) that is balanced and that has some

player i ∈ N . Then consider the node dr→i ∈ M (which is the unique node that is an ascendant of i and a child

of r, the root). If, in this game, every node is a sibling of i, ascendant of i, a sibling of an ascendant of i, or i itself,

then the number of coalitions that i is critical to in the subgame Gdr→i
multiplied by the number of coalitions that

dr→i is critical to in the one-level subgame Gmin
r is equal to the number of coalitions that i is critical to in G. That

is what is codi�ed in the following lemma.
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Lemma 3.3. Given a hierarchical voting game G = (M,N, {Ek}k∈M , {vk}k∈M) that is balanced, pick some
i ∈ N . If ∀j ∈ N, j ∈ Ek where k ∈ Ai, then∑

S⊆dr→ileaf

(v(S ∪ {i})− v(S))
∑

S⊆Er

(v(S ∪ {dr→i})− v(S)) =
∑
S⊆N

(v(S ∪ {i})− v(S))

Proof. Any coalition c that i is critical to in Gdr→i
can be combined with any coalition c′ that dr→i is critical to in

Gmin
r to create a coalition that i is critical to in G. Consider this coalition c ∪ c′. Without i, c is a losing coalition

in Gdr→i
, so vdr→i

(c ∪ c′) = 0. Then, since c′ is a losing coalition in Gmin
r , v(c ∪ c′) = 0. But since i is critical to c,

c ∪ {i} is a winning coalition in Gdr→i
, so vdr→i

(c ∪ c′ ∪ {i}) = 1. Then, since dr→i is critical to c′, c′ ∪ {dr→i} is a

winning coalition in Gmin
r . Then v(c ∪ c′ ∪ {i}) = 1. Thus, c ∪ c′ is a losing coalition and c ∪ c′ ∪ {i} is a winning

coalition, so i is critical to c∪ c′. Likewise, any coalition that i is critical to in G can be decomposed into a coalition

that i is critical to in Gdr→i
and a coalition that dr→i is critical to in Gmin

r .

Thus there is a one-to-one relationship between the set of coalitions that i is critical to inG and the set of pairs

of coalitions where the �rst is one that i is critical to in Gdr→i
and the second is one that dr→i is critical to in Gmin

r .

Thus the product of the number of coalitions that i is critical to inGdr→i
and the number of coalitions that dr→i

is critical to in Gmin
r is equal to the number of coalitions i is critical to in G.

With these lemmas in hand, we now introduce the main result in this section.

Theorem 3.4. In any hierarchical voting game that is balanced, the multiplicative Banzhaf power index is equal
to the Banzhaf power index.

Proof. Proof by induction.

Base case: The game tree itself is a leaf node. Likewise, when considered as a �at model, it is still just one leaf

node. The power of this node is 1 computed by both the MBPI and the BPI.

Inductive step: Assume we have hierarchical voting gamesG1, G2, . . . Gn whereGi = (Mi, Ni, {Ek}k∈Mi
, {vk}k∈Mi

)

for i ∈ n. By the inductive hypothesis, the MBPI is equal to the BPI in each game. That is, for each Gi where

i ∈ 1 . . . n and j ∈ Ni, p
MBPI
j (Gi) = pBPI

j (Gi).

Now, consider a hierarchical voting game G0 = (M0, N0, {Ek}k∈M0 , {vk}k∈M0), constructed in the following

way: N0 =
n⋃

i=1

Ni. M0 =
n⋃

i=1

Mi ∪ {G0}. E =
n⋃

i=1

Ei ∪ {{G0, G1}, . . . , {G0, Gn}}. v =
n⋃

i=1

vi ∪ {vG0}. {vG0} can be

any characteristic function.

Pick some player i ∈ G0. Then, i is a player in some gameGj , where j ∈ (1, . . . , n). By assumption, pMBPI
i (Gj)

= pBPI
i (Gj).

Now create a game G′0 = (M ′
0, N

′
0, {Ek}k∈M0 , {vk}k∈M0) that is the same as G0 but with all nodes that are

not siblings of i, ascendants of i, siblings of ascendants of i, or i itself removed. By Lemma 3.2, the power of i

in this game is the same as the power of i in G0. That is, pBPI
i (G′0) = pBPI

i (G0). Note that this also means that

pBPI
i (G′j) = pBPI

i (Gj).
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Now we can use the following logic. First, by the de�nition of the MBPI, we know:

pMBPI
i (G0) = pMBPI

i (Gj)

∑
S⊆Er\{Gj}

(v(S ∪ {Gj})− v(S))

2|Er|−1
(De�nition of MBPI) (10)

= pBPI
i (Gj)

∑
S⊆Er\{Gj}

(v(S ∪ {Gj})− v(S))

2|Er|−1
(Inductive hypothesis) (11)

= pBPI
i (G′j)

∑
S⊆Er\{Gj}

(v(S ∪ {Gj})− v(S))

2|Er|−1
(pBPI

i (G′j) = pBPI
i (Gj)) (12)

= pBPI
i (G′j)

∑
S⊆Er\{G′j}

(v(S ∪ {G′j})− v(S))

2|Er|−1
(Gk = G′k∀k ∈ {1, . . . , n}) (13)

=

∑
S⊆N ′j\{i}

(v(S ∪ {i})− v(S))

2|N
′
j |−1

∑
S⊆Er\{G′j}

(v(S ∪ {G′j})− v(S))

2|Er|−1
(De�nition of BPI) (14)

(15)

Note that, since none of Gk, k ∈ {1 . . . n} \ j have children, the number of players in the game G′0 is equal to

the number of players in the game G′j plus the number of children of r, minus one for Gj , which is the only child

of r that has children (and so is not a player). That is,

|N ′j|+|Er|−1 = |N ′0|
2|N

′
j |2|Er|−1 = 2|N

′
0|

So, substituting in the denominator, our whole expression becomes:

=

( ∑
S⊆N ′j\{i}

(v(S ∪ {i})− v(S))

)( ∑
S⊆Er\{G′j}

(v(S ∪ {G′j})− v(S))

)
2|N

′
0|−1

Now consider the numerator of the equation, which is: ∑
S⊆N ′j\{i}

(v(S ∪ {i})− v(S))

 ∑
S⊆Er\{G′j}

(v(S ∪ {G′j})− v(S))


This is the number of coalitions that i is critical to in G′j multiplied by the number of coalitions that G′j is

critical to in G′0. Thus, by Lemma 3.3,

 ∑
S⊆N ′j\{i}

(v(S ∪ {i})− v(S))

 ∑
S⊆Er\{G′j}

(v(S ∪ {G′j})− v(S))

 =
∑

S⊆N ′0\{i}

(v(S ∪ {i})− v(S))

Putting our numerator and denominator together, we get:

11



∑
S∈N ′0\{i}

(v(S ∪ {i})− v(S))

2|N
′
0|−1

= pBPI
i (G′0)

Which, by Lemma 3.2,

= pBPI
i (G0)

So we have:

pMBPI
i (G0) = pBPI

i (G0)

Thus, the equality holds in the inductive step, and the theorem holds in general.

3.2 Computation

The structure of the MBPI leads to a more computationally e�cient way to compute it.

If the hierarchical voting game is balanced, we can compute it much faster. We introduce BH Mult Algorithm

to e�ciently compute the MBPI.

Algorithm 2: BH Mult Algorithm

Result: pMBPI
i , the power of each player i ∈ N players

1 Input: root r, parent_bh b

2 if Er == ∅ then
3 pBPI

j = b

4 else
5 for i ∈ Er do
6 for S ⊆ Er do
7 pBPI

i = pBPI
i + |v(S ∪ {i})− v(S)|

8 end
9 pBPI

i = pBPI
i /2|Er|−1

10 end
11 for i ∈ Er do
12 BH Mult Algorithm(i, b pBPI

i )

13 end
14 end

Note that in order to calculate the MBPI for all players, this algorithm passes over every node once, making

one computation that requires looking at each permutation of its children.

Thus the runtime is O(nS2S), where n is the number of nodes in the tree and S is the branching factor. As it

must be the case that S ≤ n, we can be sure that BH Mult Algorithm is at least as fast as BH Flat Algorithm, and

often faster. The smaller the branching factor is, the greater the speed-up The scenario where S = n is the one

where the tree is only of depth one. In that case, the algorithms are e�ectively the same and thus have the same

runtime (O(n22n) = O(nS2S) when n = S).
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Depth-�rst

A small modi�cation of BH Mult Algorithm allows it to be run to calculate the power for one player very

quickly.

Algorithm 3: BH Mult Depth-First Algorithm

Result: pMBPI
j , the power of some player j ∈ N players

1 Input: root r, parent_bh b, player j

2 if Er == ∅ then
3 pBPI

j = b

4 else
5 for i ∈ Er ∩ Aj do
6 for S ⊆ Er do
7 pBPI

i = pBPI
i + |v(S ∪ {i})− v(S)|

8 end
9 pBPI

i = pBPI
i /2|Er|−1

10 end
11 for i ∈ Er ∩ Aj do
12 BH Mult Depth-First Algorithm(i, b pBPI

i , j)

13 end
14 end

BH Mult Depth-First Algorithm runs as a depth-�rst algorithm. This reduces the computation time of one

player i to O(|Ai|S2S), where |Ai| is the number of ascendants of player i and S is the branching factor. The

runtime of BH Flat Algorithm run for one player i is O(n2n), where n is the number of players in the game.

This is a major advantage in large-scale computing, as algorithms that require the entire tree quickly become

intractable with a large tree. A depth-�rst search allows us to calculate the BPI of one player in a much shorter

amount of time.

4 Example: French Senate
One speci�c case where the BPI is useful is in situations where people vote for elected representatives and

there are varying vote weights. One classic example is the United States electoral college, which is a weighted

majority game. In this weighted majority game, the top level is a root node which represents the �nal outcome of

the electoral college. The next level is a set of nodes that are each a state, whose weight is equal to the number of

electoral votes.

This game is small enough to run the complete �at BPI, which has been done several times. This results in a

calculation of power for each state [5].

One voting system that is more complicated than the US electoral college is the election of French Senators. In

France, there is universal su�rage for electing these members of parliament, but there is a complex voting mecha-

nism. Each of the 34,965 communes in France are allotted representatives based on their population. For example,

communes with 1,500-2,499 people each are allotted 5 delegates, and communes with a population of more than

30,000 are allotted 69 delegates plus one delegate for each 800 people more than 30,000 [29]. These representatives

from communes then vote in electoral colleges within their district to elect the Senators from their district. There

are also a few other politicians that are included in these electoral colleges, but delegates from communes make up

more than 95% of the voters in the electoral colleges [30]. There are a few members of parliament that are elected

in slightly di�erent ways, but the vast majority of the 348 members of the French senate are elected from the 128

electoral colleges. This is a hierarchical weighted majority game with several levels: voters in a commune who

elect delegates, commune delegates and other politicians in the electoral college who elect members of parliament,
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Figure 5: The United States Electoral College as a hierarchical weighted majority game.

US Presidency

Alabama

9 votes

Alaska

3 votes

... Wyoming

3 votes

Voter #1

1 vote

... Voter #3,700,000

1 vote

... ...

and members of parliament in the Senate.

Figure 6: The French Senate as a hierarchical weighted majority game.

French Senate

Senator from St. Martin

1 vote

...

Delegate #1

1 vote

... Delegate #23

1 vote

Delegate #24

1 vote

Delegate #25

1 vote

Voter #1

1 vote

... Voter #18,962

1 vote

...

Calculating the power of any speci�c voter with the BH Flat Algorithm would be too expensive for this whole

game, since it would involve looking at all 2n voters, where n is the voting population of France (around 47 million).

Even looking just at the power of each commune in the senate would be to expensive, as it would involve looking

at all 234,965 subsets of all the communes. However, we can utilize BH Mult Depth-First Algorithm to calculate the

MBPI for any speci�c voter.

4.1 Voters in Toulouse and Saint Martin

Now we can ask an interesting question: who has more power in the French Senate, a voter in the small

commune (within a small district) of Saint Martin or the large commune (within a large district) of Toulouse?

As this is a balanced hierarchical voting game, Theorem 3.4 tells us that the power of some voter in the French

parliament is equal to the product of the power of the voter in their commune, the power of their commune delegates

14



in the district’s electoral college, and the power of their district’s Senators in the Senate. Again, this is a hierarchical

weighted majority game where each player’s weight is 1 at each level. We obtain the following information from

the internet [16] [18] [19].

Commune Voters Delegates Electoral college size Senators Total Senators in France
St. Martin 18,962 23 25 1 348

Toulouse 254,538 621 2,955 10 348

However, even calculating the BPI of a Senator in the Senate seems at �rst glance too expensive. Running the

BH Flat Algorithm on just that one level game would involve looking at all 2348 subsets of the Senators. However,

recall that by lemma 2.1, we know that the power of each Senator is equal, since the Senate is a weighted voting

game and each Senator has equal voting weight. Similarly, each delegate has equal power within their electoral

college and each voter has equal power within their commune. This is the advantage of the MBPI: voters across

the country do not have equal power and their power is di�cult to calculate since it would involve running the BH

Flat Algorithm on the whole population of France, but using the MBPI we can decompose the game into sub-games

which are each easy to calculate since they involve players with equal weights.

So, we can calculate the MBPI of a voter in their commune, the power of a commune’s delegates in its district’s

electoral college, and the power of the district’s Senators in the Senate. From this we can obtain the power of a

voter in the Senate. Also, we know that there were 16,558,379 voters in municipal elections in France in 2020, so

the average French voter has power
1

16558379
[19].

Voter P. of voter in commune P. of commune in E.C. P. of Senators in Senate P. voter in Senate
St. Martin Voter 5.273e−5 .92 2.873e−3 1.394e−7

Toulouse Voter 3.929e−6 .2101 2.873e−2 2.372e−8
Avg. French Voter - - - 6.039e−8

We �nd that, via the BPI, a voter in Saint Martin has about double the power of the average French voter, while

a voter in Toulouse has about one third of the power of the average French voter.

5 Experiment
To verify that BH Mult Algorithm is indeed an improvement over BH Flat Algorithm, we ran experiments on

language data. The objective of the BPI in this situation is determining the most important words in a body of text.

5.1 Vocabulary selection

The problem of vocabulary selection is an important one in the creating NLP neural networks. A smaller

vocabulary makes a model more interpretable [1] [27], requires less memory [31], is more able to be used in a

resource-constrained setting [33], and is less prone to over �tting [17] [7]. One way to choose the vocabulary is to

determine which words are most important via the BPI [22]. This is a costly problem, as NLP neural networks can

be often involve large datasets with long sentences and many words. This problem is approximately a hierarchical

voting game, and as such we can utilize the BH Mult Algorithm to get a close approximation of the BPI much

quicker than running the BH Flat Algorithm.
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5.2 As a hierarchical voting game

We model a paragraph as a voting game where the output is the sentiment of the paragraph and the players

are the words.

For our characteristic function, we use the sentiment analysis classi�er in the Stanford NLP Group’s Stanza

library [24]. Our binary output is a 1 for positive sentiment and 0 for neutral or negative sentiment. This means

that in running the algorithm, words are given higher power when their addition or removal from the set causes

the sentiment to �ip from positive to neutral/negative or from neutral/negative to positive. This aligns with our

dataset, which is yelp reviews, which generally have clear positive or negative sentiment.

We can further model any paragraph as a hierarchical voting game by dividing it into a parse tree using Stanza

[24]. Stanza’s constituency parser divides the paragraph into blocks that contain related words. One example is

below:

Figure 7: Simple Parse Tree

The ice cream is not very good

The ice cream is not very good

The ice cream is not very good

not very good

very good

The straighforward approach would be to run the BH Flat Algorithm on the entire paragraph, using the sen-

timent analysis classi�er as our characteristic function. However, since we have the paragraph as a hierarchical

voting game, we can use BH Mult Algorithm.

Note that for the BPI to be equal to the MBPI, the game needs to be a hierarchical voting game that is balanced.

However, there are two key di�erences between the situation in this experiment and a balanced hierarchical voting

game:

• This hierarchical voting game is not balanced. For every collection of words in a sentence, the opposite

collection of words does not produce the opposite sentiment. For example, in the sentence "The food is not

good," "not good" produces a negative sentiment but "the food is" produces a neutral sentiment rather than a

positive sentiment.
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• The overall characteristic function (sentiment analysis) does not exactly match the combination of character-

istic functions at each level of the tree (which are also sentiment analysis). For example, both the phrase "I feel

not" and the phrase "bad" would register as negative sentiment. However, all together, "I feel not bad" would

register as positive sentiment. Fortunately, this situation is fairly rare. Most English sentences do follow the

expected result of combining their constituent parts, such as the in the example above, where "the ice cream"

(neutral) and "is not very good" (negative), combine to form "the ice cream is not very good" (negative), just

as we would expect.

Due to these two reasons, the BPI is not equal to the MBPI. However, for English sentences, the two models of

power are close enough to each other that they produce very similar results. The savings in time are large enough

that some inaccuracy may be tolerable. The complexity / accuracy tradeo� is discussed more below.

5.3 Accuracy metric

To asses the accuracy of our approximate algorithm, we calculate two metrics: the mean squared error and

Spearman’s ρ. The mean squared error is established as a measure of the distance between two vectors and has

been used as a measure of an estimation of the BPI before [26].

But, in the case of vocabulary selection, what we care most about is the ordering of the words, since we are

likely to take the top few of them to be the vocabulary in our machine learning model. Thus, we use the rank-based

metric Spearman’s ρ, that depends only on the �nal ranking of the words. Spearman’s ρ is a widely-used correlation

coe�cient between two rankings of the same length [6].

First, for each player i, we calculate the BPI as: pBPI
w = 1

|c|
∑
r∈c

pBPI
w (r), where c is the set of paragraphs and

pBPI
w (r) is the power of word w in paragraph r. From that, we obtain a vector of weights from both the BPI and

MBPI.

Then we follow the formula for mean squared error, which is MSE =

√ ∑
w∈N

(pBPI
w −pMBPI

w )2

|N | .

To calculate Spearman’s ρ, we �rst calculate the rank of each wordw ∈ N in each BPI, denoted sBPI
w and sMBPI

w .

Then use the standard formula, which is ρ = 1−
6

∑
w∈N

(sBPI
w −sMBPI

w )2

|N |(|N |2−1) .

5.4 Results

First, we calculated the runtime of running both algorithms on paragraphs of di�erent lengths. Using data from

our yelp dataset, we found sentences of each given length and timed how long the algorithms took. For the BH

Flat Algorithm, we used one data point. This is su�cient because for the �at algorithm, the runtime should always

be 2n, where n is the number of words in the paragraph, no matter what the words are. However, for the BH Mult

Algorithm, the runtime can vary between paragraphs of the same length, since they are split into di�erent parse

trees (via Stanza), and parse trees of di�erent shapes can have di�erent runtimes. So, for the BH Mult Algorithm,

we used 20 samples for every di�erent paragraph length.

Next, we calculated the mean squared error as the length of the paragraph increases, to get a sense of how

close the two distributions are. Each data point is the average of the algorithm run on ten paragraphs.

Finally, we calculated Spearman’s ρ as the length of the paragraph increases, to get a sense of how aligned the

two rankings are. Each data point is the average of the algorithm run on ten paragraphs.

5.5 Discussion

As can be seen in Figure 8, the runtime of the BH Flat Algorithm increases exponentially as the length of the

paragraph increases. This makes it intractable for longer paragraphs. In contrast, the runtime of the BH Mult Al-

gorithm increases slowly, so it is tractable for much longer paragraphs. Taking each sentence as its own paragraph,
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Figure 8: The runtime of the BH Mult and BH Flat Algorithms

Figure 9: The Mean Squared Error between the outputs of BH Mult and BH Flat Algorithms

since the average sentence in the English language is 15-20 words, the BH Mult Algorithm allows for computing of

many more sentences in the same amount of time. Furthermore, the BH Mult Algorithm could allow for multiple

sentence paragraphs to become tractable, as most of the yelp reviews in our dataset were. This allows for words to

be understood better in their full context, as opposed to in only the single sentence they are in. Thus, in that way,

running the Mult BH Algorithm on longer paragraphs can allow for more nuanced understanding of the words -

by examining longer paragraphs and more paragraphs total.

There is, however, a trade-o� in terms of accuracy, as shown in Figures 9 and 10. The mean squared error

increases until a paragraph length of 6 words, then decreases slightly, meaning the approximate algorithm gets

farther away then closer to the true value as the length of the paragraph increases. It makes intuitive sense that to

start, error would increase as sentences get slightly longer and the error from the approximation increases, but then

as the paragraphs get much longer, there is more data for the algorithm take in, so it more accurate they become.
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Figure 10: Spearman’s ρ between the outputs of the BH Mult and BH Flat Algorithms

On the other hand, Spearman’s ρ decreases slightly as the paragraph length increases, which makes sense - as

the paragraphs get longer, there are more total words in the ranking, so there is more potential for small deviations

in the rankings.

There is certainly a trade-o� of accuracy for speed. More examination of the trade-o� should be undertaken by

anyone who wants to implement this for a natural language processing application, but in general, if a user decides

that a mean squared error of about .03 (or lower, if longer paragraphs are used) and Spearman’s ρ of about .6 is

tolerable, then the Mult BH Algorithm provides a large speedup.

6 Conclusion
This paper presented a new algorithm, the BH Mult Algorithm, for calculating the Banzhaf power index on

hierarchical voting games. The runtime of the new algorithm is in polynomial time, as opposed to exponential time

needed to run the Banzhaf power index directly. As such, this allows us to calculate Banzhaf power for large games

that were previously intractable.

We presented two speci�c cases where this result is useful. In the French Senate, we were able to calculate

the voting power of voters in Toulouse and Saint Martin, which is an intractable problem when run with the �at

Banzhaf power index. This result showed us that under this model, a voter in Saint Martin has about six times as

much power as a voter in Toulouse. In the problem of determining the power of words for vocabulary selection,

we were able to speed up the algorithm by several orders of magnitude even for small paragraphs (10 words long),

while still keeping relatively high accuracy.

For future work, we suggest expanding this line of reasoning to other types of similar voting games. There are

many di�erent types of games that do not fall in the strict parameters we have laid out as a voting game. Some

games aren’t balanced. Some games have inputs and outputs that are not restricted to binary values, such as ternary

voting games, which are games with three possible choices, with the third generally being abstaining. Finding a

similar algorithmic speedup for those games would be useful in making their computation tractable. Also, the SSPI

on hierarchical voting games should be studied with a similar line of reasoning, with the hopes of �nding a way to

calculate it much quicker.
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